Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Heliyon ; 10(9): e30140, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707298

RESUMO

This study focused on exploring the impact of the digital economy (DE) on energy poverty (EP) across Chinese provinces from 2004 to 2018, motivated by the critical need to understand how technological advancements in the digital sector influence energy accessibility and sustainability. Conducted against the backdrop of global digital transformation, the research aimed to dissect the nuanced ways in which the DE contributes to mitigating EP, employing dynamic panel threshold and indirect effect models to capture both the direct and nuanced, and intermediate effects of digital progress on energy deprivation. Key findings revealed a significant reduction in EP attributed to the advancements in DE, with the most notable improvements observed in Eastern China where strategic energy policies and management practices enhanced the positive impacts of digitalization. The study highlighted the DE's role in improving energy access, efficiency, and environmental sustainability, although it also pointed out the potential for regressive effects in areas with lower levels of technological advancement. These findings are of substantial value as they offer empirical evidence of the DE's capacity to alleviate EP, underlining the importance of integrating digital strategies into energy policy planning. The research provides critical insights for policymakers, stakeholders in the energy sector, and scholars interested in the synergies between digital innovation and energy security, suggesting that leveraging digital technologies could accelerate efforts towards achieving sustainable energy access and combating energy poverty in China and potentially in other contexts facing similar challenges.

2.
J Ethnobiol Ethnomed ; 20(1): 48, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715115

RESUMO

BACKGROUND: The use of medicinal plants to treat various veterinary illnesses has been practiced for millennia in many civilizations. Punjab is home to a diverse ethnic community, the majority of whom work in dairy farming, agriculture, and allied professions and have indigenous practices of treating animal illnesses using native flora. This study was designed to (1) document and preserve information about the applications of medicinal plant species in ethnoveterinary remedies among inhabitants of Punjab, Pakistan, and (2) identify popular plants for disease treatment by quantitative analysis of the obtained data and to assess the pharmacological relevance of these species. METHODS: To collect data from informants (N = 279), questionnaires and semi-structured interviews were used. The ethnoveterinary data were analyzed using principal component analysis, relative frequency citation, fidelity level, relative popularity level, and rank order priority. RESULTS: A total of 114 plant species utilized in the ethnoveterinary medicinal system were found, which were divided into 56 families and used to treat 16 different illnesses. The Poaceae family, with 16 species, was the most common in the region. The most commonly employed growth form in herbal preparation was herb (49%). The most used part in ethnoveterinary remedies was leaves (35%), while powder was the most commonly used way for preparing ethnoveterinary remedies (51 applications). According to principal component analysis, the most typically used species in the research region were grasses. Five grasses (Arundo donax, Desmostachya bipinnata, Eleusine indica, Hordeum vulgare, and Pennisetum glaucum) showed a 100% FL value when used to treat diuretics, helminthiasis, digestive problems, fever, cough, worm infestation, indigestion, galactagogue, oral infections, and genital prolapse. The maximum value of disease cured level (DCL%) was recorded at 87.6% for endo- and ecto-parasitic ailments in the study area. CONCLUSION: This study demonstrates that medicinal plants play an important part in satisfying farmers' animal healthcare demands, making it a feasible practice. The study also provides a wealth of knowledge regarding ethnoveterinary methods for further planning and application, providing an option for farmers who cannot afford allopathic therapy.


Assuntos
Fitoterapia , Plantas Medicinais , Medicina Veterinária , Plantas Medicinais/classificação , Paquistão , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Medicina Tradicional , Animais , Idoso , Etnobotânica , Adulto Jovem , Inquéritos e Questionários
4.
Artigo em Inglês | MEDLINE | ID: mdl-38735792

RESUMO

Since its reinstatement in 1997, the effectiveness of the clinical year prior to radiology residency has been a contentious topic concerning its role in cultivating skilled radiologists. This review evaluates the limitations of the one-year internship and explores alternative approaches. Utilizing databases such as PubMed, Google Scholar, and Scopus, this study identified pertinent articles that aligned with the inclusion criteria for post-graduate year 1 (PGY-1) training before radiology residency. Through a qualitative analysis of the literature, the review identifies prevalent themes concerning the drawbacks of the preliminary clinical year and potential alternative strategies. Many current trainees express skepticism about the value of the clinical year, noting a disconnect between its generalist nature and the specialized demands of subsequent radiology training. Interns felt uncertain about radiology exam indications and found radiology departments to be unapproachable, reflecting the need for alternative educational strategies to improve the preparedness and confidence of radiology interns as they transition from academic environments to clinical practice. The preparatory clinical year prior to entering radiology residency presents a mix of utility, along with alternative approaches to structuring this year. These alternatives include incorporating it into the undergraduate medical curriculum, restructuring or designing radiology-focused clinical years, and reevaluating the overall effectiveness of the clinical year in training.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38668947

RESUMO

Renewable energy is essential for boosting economic expansion and lowering carbon dioxide emission (CO2) to achieve carbon neutrality. This study's objective is to investigate the relationship between the use of renewable energy, economic growth, and CO2 for South Caucasus Countries. For analysis purposes, time series methods were applied on the panel data. Second-generation unit root and cointegration tests were used to test the cross-sectional dependence. Afterward, panel causality and panel VAR techniques were performed to examine the relationship between the variables. Based on feedback hypothesis, results of our causality analysis revealed a bidirectional causality relationship between growth and renewable energy consumption. Moreover, we revealed unidirectional causality from CO2 to renewable energy and from growth to CO2 emission. We also found that the effect of a shock in renewable energy on growth is increasing, and on CO2, it is decreasing implying that renewable energy consumption will trigger growth and have a reducing effect on CO2 emissions. We portrayed significant workable implications for policymakers, regulation bodies, companies, stakeholders, and managers. Results from this study should be extrapolated with caution since their applicability is limited to the South Caucasus Countries. In addition, the research heavily depends on summaries, which may obscure regional differences. In the future, researchers may want to dig deeper into the data and examine the subtle effect of renewable energy policy nationally. Moreover, including socio-economic aspects and technical improvements in the research might give a more thorough picture of the dynamics at play.

6.
Heliyon ; 10(7): e28052, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596009

RESUMO

Background: Carbapenem resistance is epidemic worldwide, these last resort antimicrobials are listed in the WHO 'watch group' with higher resistance potential. During the years 2017-18 Pakistan Antimicrobial Resistance Surveillance System reported an increase in carbapenem resistance. However, a comprehensive information on prevalence and molecular epidemiology of carbapenem resistance in Pakistan is not available. This systematic review and meta-analysis is aimed to report the current carbapenem resistance situation in Pakistan and its treatment options. Methods: In this systematic review and meta-analysis, we investigated the pooled prevalence (PPr) of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae by organizing available data, from Web of Science and PubMed by April 2, 2020, in various groups and subgroups including species, years, provinces, extended spectrum ß-lactamase production, clinical presentation, carbapenemase and metallo-ß-lactamase production, and New Delhi metallo-ß-lactamase (NDM) prevalence. Literature review was updated for the studies publisehd by December 07, 2023. Moreover, we descriptively reviewed the molecular epidemiology of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae in Pakistan. Lastly, we statistically explored different treatment options available for carbapenem resistant infections. We used R package 'metafor' for performing meta-analysis and influence diagnostics and determining treatment options. Results: From two academic databases Web of Science and PubMed we identified 343 studies. Eighty-eight studies were selected for the systematic review and meta-analysis. Seventy-four studies were selected for phenotypic analysis, 36 for genotypic analysis, and 31 for available treatment options. PPr-ID of 12% [0.12 (0.07, 0.16)] was observed for phenotypic carbapenem resistance in Enterobacteriaceae with more prevalence recorded in Klebsiella pneumoniae 24% [0.24 (0.05, 0.44)] followed by 9% [0.09 (-0.03, 0.20)] in Escherichia coli. During the last two decades we observed a striking increase in carbapenem resistance PPr i.e., from 0% [0.00 (-0.02, 0.03)] to 36% [0.36 (0.17, 0.56)]. blaNDM with PPr 15% [0.15 (0.06, 0.23)] in naive isolates was found to be the fundamental genetic determinant for carbapenem resistance in Enterobacteriaceae in Pakistan. Polymyxin B, colistin, tigecycline, and fosfomycin were identified as the suggested treatment options available for multidrug resistant infections not responding to carbapenems. Various studies reported carbapenem resistance from human, animal, and environment sources. Conclusion: In conclusion, we found that NDM-1 producing carbapenem resistant Enterobacteriaceae are increasing in Pakistan. Meta-analysis showed that metallo-ß-lactamases producing E. coli ST405 and K. pneumoniae sequence type11 are the major resistant clones. Number of reported studies in various subgroups and inconsistency in following CLSI guidelines are the potential limitations of this meta-analysis. A National antimicrobial resistance (AMR) surveillance strategy based on One Health is urgently needed to check any future AMR crisis in Pakistan.

7.
Environ Sci Pollut Res Int ; 31(20): 28950-28966, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38564132

RESUMO

The Jinhua-Quzhou basin in China is one of the most susceptible areas to drought. Due to the loss of vegetation and great fluctuations in rainfall and surface temperature, global warming occurs. Timely, accurate, and effective drought monitoring is crucial for protecting local vegetation and determining which vegetation is most vulnerable to increased LST during the period 1982-2019. It assumes a strong correlation between loss of vegetation cover, changes in monsoon climate, drought, and increases in land surface temperature (LST). Due to significantly increased in LST, low precipitation and vegetation cover, NDVI, TVDI, VCI, and NAP are useful in characterizing drought mitigation strategies. The temperature vegetation drought index (TVDI), normalized difference vegetation index (NDVI), vegetation condition index (VCI), and monthly precipitation anomaly percentage (NAP) can be helped to characterize drought reduction strategies. Monthly NDVI, NAP, VCI, TVDI, normalized vegetation supply water index (NVSWI), temperature condition index (TCI), vegetation health index (VHI), and heat map analysis indicate that the Jinhua-Quzhou basin experienced drought during 1984, 1993, 2000, and 2011. Seasonal SR, WVP, WS, NDVI, VCI, and NAP charts confirm that the Jinhua-Quzhou basin was affected by severe drought in 1984, which continued and led to severe droughts in 1993, 2000, and 2011. Regression analysis showed a significant positive correlation between NDVI, TVDI, VCI, and NAP values, while NVSWI, TVDI, and VHI showed positive signs of good drought monitoring strategies. The research results confirm the correlation between loss of vegetation cover and LST, which is one of the causes of global warming. The distribution of drought changed a trend indicating that compared with the Jinhua region; the Quzhou region has more droughts. The changing trend of drought has characteristics from 1982 to 2019, and there are significant differences in drought changing trends between different Jinhua-Quzhou basin areas. Overall, from 1982 to 2019, the frequency of drought showed a downward trend. We believe that these results will provide useful tools for drought management plans and play a relevant role in mitigating the effects of drought and protecting humanity from climate hazards.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Temperatura , China , Monitoramento Ambiental/métodos , Mudança Climática , Secas , Clima , Estações do Ano , Chuva
8.
Am J Transl Res ; 16(2): 432-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463578

RESUMO

BACKGROUND: Human cell division cycle-associated protein 8 (CDCA8), a critical regulator of mitosis, has been identified as a prospective prognostic biomarker in several cancer types, including breast, colon, and lung cancers. This study analyzed the diagnostic/prognostic potential and clinical implications of CDCA8 across diverse cancers. METHODS: Bioinformatics and molecular experiments. RESULTS: Analyzing TCGA data via TIMER2 and GEPIA2 databases revealed significant up-regulation of CDCA8 in 23 cancer types compared to normal tissues. Prognostically, elevated CDCA8 expression correlated with poorer overall survival in KIRC, LUAD, and SKCM, emphasizing its potential as a prognostic marker. UALCAN analysis demonstrated CDCA8 up-regulation based on clinical variables, such as cancer stage, race, and gender, in these cancers. Epigenetic exploration indicated reduced CDCA8 promoter methylation levels in Kidney Renal Clear Cell Carcinoma (KIRC), Lung Adenocarcinoma (LUAD), and Skin Cutaneous Melanoma (SKCM) tissues compared to normal controls. Promoter methylation and mutational analyses showcased a hypomethylation and low mutation rate for CDCA8 in these cancers. Correlation analysis revealed positive associations between CDCA8 expression and infiltrating immune cells, particularly CD8+ and CD4+ T cells. Protein-protein interaction (PPI) network analysis unveiled key interacting proteins, while gene enrichment analysis highlighted their involvement in crucial cellular processes and pathways. Additionally, exploration of CDCA8-associated drugs through DrugBank presented potential therapeutic options for KIRC, LUAD, and SKCM. In vitro validation using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) confirmed elevated CDCA8 expression in LUAD cell lines (A549 and H1299) compared to control cell lines (Beas-2B and NL-20). CONCLUSION: This study provides concise insights into CDCA8's multifaceted role in KIRC, LUAD, and SKCM, covering expression patterns, diagnostic and prognostic relevance, epigenetic regulation, mutational landscape, immune infiltration, and therapeutic implications.

9.
J Clin Exp Hepatol ; 14(4): 101364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449506

RESUMO

Background/Aims: Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods: Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results: Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion: AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.

10.
ACS Omega ; 9(8): 8632-8653, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434807

RESUMO

Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.

11.
Small ; : e2310584, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470191

RESUMO

Renewable energy is crucial for sustainable future, and Cu2 ZnSnS4 (CZTS) based solar cells shine as a beacon of hope. CZTS, composed of abundant, low-cost, and non-toxic elements, shares similarities with Cu(In,Ga)Se2 (CIGS). However, despite its promise and appealing properties for solar cells, CZTS-based solar cells faces performance challenges owing to inherent issues with CZTS material, and conventional substrate structure complexities. This review critically examines these roadblocks, explores ongoing efforts and breakthroughs, providing insight into the evolving landscape of CZTS-based solar cells research. Furthermore, as an optimistic turn in the field, the review first highlights the crucial need to transition to a superstrate structure for CZTS-based single junction devices, and summarizes the substantial progress made in this direction. Subsequently, dive into the discussion about the fascinating realm of CZTS-based tandem devices, providing an overview of the existing literature as well as outlining the possible potential strategies for enhancing the efficiency of such devices. Finally, the review provides a useful outlook that outlines the priorities for future research and suggesting where efforts should concentrate to shape the future of CZTS-based solar cells.

12.
Environ Res ; 252(Pt 3): 118784, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555984

RESUMO

The escalating trend of greenhouse gas emissions presents a dual threat to both food security and the exacerbation of global warming. Addressing this pressing issue demands concerted efforts on local and global scales to champion sustainable food production and foster environmental benefits. In 2015, a pivotal field experiment was conducted in the North China Plain, aiming to delineate the intricate balance between agricultural productivity and environmental stewardship. This study comprised eight meticulously designed treatments, incorporating two key components: the evaluation of economic and environmental parameters encompassing carbon footprint, energy consumption, and the carbon sustainability index. Notably, while the carbon sustainability index exhibited improvement, it also revealed a 9.4% increase in emissions compared to the baseline, underscoring the nuanced trade-offs involved. The findings underscored the efficacy of no-tillage (NT) practices coupled with soybean-based crop rotation, mitigating yield reduction compared to conventional tillage (RT). However, the optimal yield was observed in the RT-MW treatment, amalgamating conventional tillage with minimum tillage practices. Moreover, despite the higher cost associated with soybeans relative to milled wheat, their cultivation yielded a notable increase in net income. These compelling results advocate for the adoption of conservation agriculture as a means to optimize the delicate equilibrium between environmental preservation and economic prosperity. Furthermore, the study underscores the imperative for further research endeavors aimed at devising highly productive agricultural systems that seamlessly integrate environmental sustainability with economic viability, echoing the crucial insights gleaned from analogous contexts.

13.
PLoS One ; 19(2): e0297376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422065

RESUMO

Developing novel EV chargers is crucial for accelerating Electric Vehicle (EV) adoption, mitigating range anxiety, and fostering technological advancements that enhance charging efficiency and grid integration. These advancements address current challenges and contribute to a more sustainable and convenient future of electric mobility. This paper explores the performance dynamics of a solar-integrated charging system. It outlines a simulation study on harnessing solar energy as the primary Direct Current (DC) EV charging source. The approach incorporates an Energy Storage System (ESS) to address solar intermittencies and mitigate photovoltaic (PV) mismatch losses. Executed through MATLAB, the system integrates key components, including solar PV panels, the ESS, a DC charger, and an EV battery. The study finds that a change in solar irradiance from 400 W/m2 to 1000 W/m2 resulted in a substantial 47% increase in the output power of the solar PV system. Simultaneously, the ESS shows a 38% boost in output power under similar conditions, with the assessments conducted at a room temperature of 25°C. The results emphasize that optimal solar panel placement with higher irradiance levels is essential to leverage integrated solar energy EV chargers. The research also illuminates the positive correlation between elevated irradiance levels and the EV battery's State of Charge (SOC). This correlation underscores the efficiency gains achievable through enhanced solar power absorption, facilitating more effective and expedited EV charging.


Assuntos
Energia Solar , Humanos , Ansiedade , Transtornos de Ansiedade , Simulação por Computador , Sistemas Computacionais
14.
Heliyon ; 10(3): e24712, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38317992

RESUMO

The contamination of farm soils with heavy metals (HMs) has raised significant concerns due to the increased bioavailability and accumulation of HMs in agricultural food crops. To address this issue, a survey experiment was conducted in the suburbs of Multan and Faisalabad to investigate the spatial distribution, bioaccumulation, translocation, and health risks of cadmium (Cd) and lead (Pb) in agricultural crops. The results show a considerable concentration of Cd and Pb in soils irrigated with wastewater, even though these levels were below the permissible limits in water and soil matrices. The pollution index for Cd was mostly greater than 1 at the selected sites, indicating its accumulation in soil over time due to wastewater irrigation. Conversely, the pollution index for Pb was below 1 at all sites. Among the plants, Zea mays accumulated the highest concentration of Cd and Pb. The translocation factor from soil to root was highest for Brassica olearecea (7.037 for Cd) and Zea mays (6.383 for Pb). The target hazard quotient (THQ) value of Cd exceeded the non-carcinogenic limit for most vegetables. The highest value was found in Allium cepa (5.256) and the lowest in Allium sativum (0.040). In contrast, the THQ level of Pb was below the non-carcinogenic limit for most vegetables, except for Allium cepa (1.479), Solanum lycopersicum (1.367), and Solanum tuberosum (1.326). The study highlights that Allium cepa poses the highest health risk for humans, while Medicago sativa poses the highest risk for animals due to Cd and Pb contamination. These results underscore the urgent need for effective measures to mitigate the health risks associated with HM contamination in crops and soils.

15.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337932

RESUMO

Droughts have become more severe and frequent due to global warming. In this context, it is widely accepted that for drought assessments, both water supply (rainfall) and demand (standardized precipitation evapotranspiration index, SPEI) should be considered. Using SPEI, we explored the spatial-temporal patterns of dry and wet annual and seasonal changes in five sub-regions of East Asia during 1902-2018. These factors are linked to excess drought frequency and severity on the regional scale, and their effect on vegetation remains an important topic for climate change studies. Our results show that the SPEI significantly improved extreme drought and mostly affected the SPEI-06 and SPEI-12 growing seasons in East Asia during 1981-2018. The dry and wet annual SPEI trends mostly affect the five sub-regions of East Asia. The annual SPEI had two extremely dry spells during 1936-1947 and 1978-2018. Japan, South Korea, and North Korea are wet in the summer compared to other regions of East Asia, with drought frequency occurring at 51.4%, respectively. The mean drought frequencies in China and Mongolia are 57.4% and 54.6%. China and Mongolia are the driest regions in East Asia due to high drought frequency and duration. The spatial seasonal analysis of solar radiation (SR), water vapor pressure (WVP), wind speed (WS), vegetation condition index (VCI), temperature condition index (TCI), and vegetation health index (VHI) have confirmed that the East Asia region suffered from maximum drought events. The seasonal variation of SPEI shows no clear drying trends during summer and autumn seasons. During the winter and spring seasons, there was a dry trend in East Asia region. During 1902-1990, a seasonal SPEI presented diverse characteristics, with clear wet trends in Japan, Mongolia, and North Korea in four different growing seasons, with dry trends in China and South Korea. During 1991-2018, seasonal SPEI presented clear dry trends in Japan, Mongolia, and North Korea in different growing seasons, while China and South Korea showed a wet trend during the spring, autumn, and winter seasons. This ecological and climatic mechanism provides a good basis for the assessment of vegetation and drought-change variations within East Asia. An understandings of long-term vegetation trends and the effects of rainfall and SPEI on droughts of varying severity is essential for water resource management and climate change adaptation. Based on the results, water resources will increase under global warming, which may alleviate the water scarcity issue in the East Asia region.

16.
Brain ; 147(4): 1197-1205, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141063

RESUMO

Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Adulto Jovem , Humanos , RNA Mensageiro/genética , Monoéster Fosfórico Hidrolases/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nudix Hidrolases
17.
Plants (Basel) ; 12(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068701

RESUMO

Climate change is one of the most prominent factors influencing the spatial distribution of plants in China, including gymnosperms. Climatic factors influence gymnosperm distribution along elevational gradients on the Qinghai-Xizang (Tibet) Plateau (QTP), and understanding how species adapt to these factors is important for identifying the impacts of global climate change. For the first time, we examined the county-level distribution of gymnosperm species on QTP using data from field surveys, published works, monographs, and internet sources. We used simulated distribution data of gymnosperms (N = 79) along the elevational gradients to investigate the overall impact of environmental variables in explaining the richness pattern of gymnosperms. Eighteen environmental variables were classified into three key variable sets (climatic seasonality, energy-water, and physical tolerance). We employed principal component analysis and generalized linear models to assess the impact of climatic variables on the gymnosperm's richness pattern. Gymnosperm species are unevenly distributed across the plateau and decline gradually from the southeast to the northwest. The altitudinal gradients have a unimodal relationship with the richness of gymnosperms, with the maximum species richness at an elevation of 3200 m. The joint effects of physical tolerance and energy-water predictors have explained the highest diversity of gymnosperms at mid-elevation. Because the richness peak correlates significantly with the wettest month's precipitation and moisture index, this confirms the significance of moisture on gymnosperm distributions due to increased precipitation during the wet season. Furthermore, our results provide evidence that climatic seasonality factors are involved in the decline of gymnosperm richness at high elevations. A total of 37% of gymnosperm species on QTP are listed as vulnerable, nearly threatened, or endangered, with elevations ranging from 600 m to 5300 m. As a result, we conclude that gymnosperms are at high risk of extinction because of the current climate fluctuations caused by global climate change. Our research offers fundamental data for the study and protection of gymnosperm species along the steepest elevation gradients.

18.
PLoS One ; 18(12): e0296182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127929

RESUMO

Climate change and variability are projected to alter the geographic suitability of lands for crops cultivation. Accurately predicting changes in the potential current and future land suitability distribution dynamics of wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) crops due to climate change scenarios is critical to adapting and mitigating the impacts of bioclimatic changes, and plays a significant role in securing food security in East Asia region. This study compiled large datasets of wheat, soybean and rice occurrence locations from GBIF and 19 bioclimatic variables obtained from the WorldClim database that affect crops growth. We recognized potential future suitable distribution regions for crops under the one socioeconomic pathway, (SSP585) for 2021-2040 and 2041-2060, using the MaxEnt model. The accuracy of the MaxEnt was highly significant with mean AUC values ranging from 0.833 to 0.882 for all models evaluated. The jackknife test revealed that for wheat, Bio4 and Bio12 contributed 17.6% and 12.6%, for soybean Bio10 and Bio12 contributed 15.6% and 49.5%, while for rice Bio12 and Bio14 contributed 12.9% and 36.0% to the MaxEnt model. In addition, cultivation aptitude for wheat, soybean, and rice increased in southeast China, North Korea, South Korea, and Japan, while decreasing in Mongolia and northwest China. Climate change is expected to increase the high land suitability for wheat, soybean, and rice in East Asia. Simulation results indicate an average decrease of unsuitable areas of -98.5%, -41.2% and -36.3% for wheat, soybean and rice from 2060 than that of current land suitability. In contrast, the high land suitable for wheat, soybean and rice cultivation is projected to increase by 75.1%, 68.5% and 81.9% from 2060 as compared with current. The findings of this study are of utmost importance in the East Asia region as they present an opportunity for policy makers to develop appropriate adaptation and mitigation strategies required to sustain crops distribution under future climates. Although the risks of wheat, soybean and rice cultivation may be significantly higher in the future because of high temperatures, heat waves, and droughts caused by climate change.


Assuntos
Oryza , Triticum , Glycine max , Produtos Agrícolas , Ásia Oriental , Mudança Climática
19.
Front Pediatr ; 11: 1266376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900685

RESUMO

Background: Developmental and epileptic encephalopathies (DEEs) signify a group of heterogeneous neurodevelopmental disorder associated with early-onset seizures accompanied by developmental delay, hypotonia, mild to severe intellectual disability, and developmental regression. Variants in the DNM1 gene have been associated with autosomal dominant DEE type 31A and autosomal recessive DEE type 31B. Methods: In the current study, a consanguineous Pakistani family consisting of a proband (IV-2) was clinically evaluated and genetically analyzed manifesting in severe neurodevelopmental phenotypes. WES followed by Sanger sequencing was performed to identify the disease-causing variant. Furthermore, 3D protein modeling and dynamic simulation of wild-type and mutant proteins along with reverse transcriptase (RT)-based mRNA expression were checked using standard methods. Results: Data analysis of WES revealed a novel homozygous non-sense variant (c.1402G>T; p. Glu468*) in exon 11 of the DNM1 gene that was predicted as pathogenic class I. Variants in the DNM1 gene have been associated with DEE types 31A and B. Different bioinformatics prediction tools and American College of Medical Genetics guidelines were used to verify the identified variant. Sanger sequencing was used to validate the disease-causing variant. Our approach validated the pathogenesis of the variant as a cause of heterogeneous neurodevelopmental disorders. In addition, 3D protein modeling showed that the mutant protein would lose most of the amino acids and might not perform the proper function if the surveillance non-sense-mediated decay mechanism was skipped. Molecular dynamics analysis showed varied trajectories of wild-type and mutant DNM1 proteins in terms of root mean square deviation, root mean square fluctuation and radius of gyration. Similarly, RT-qPCR revealed a substantial reduction of the DNM1 gene in the index patient. Conclusion: Our finding further confirms the association of homozygous, loss-of-function variants in DNM1 associated with DEE type 31B. The study expands the genotypic and phenotypic spectrum of pathogenic DNM1 variants related to DNM1-associated pathogenesis.

20.
Pulm Circ ; 13(4): e12298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37859803

RESUMO

In this 4D flow cardiovascular magnetic resonance (CMR) study, vortical blood flow in the main pulmonary artery (MPA) is quantified using circulation (á´¦), a metric used in fluid dynamics to quantify the rotational components of flow. Circulation (á´¦) is a 4D flow CMR metric that quantifies the vortical blood flow pattern in the MPA of patients with pulmonary hypertension (PH), distinguishes them from healthy controls, and shows high correlation with invasive markers of PH severity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA